Inicio

Enlaces

viernes, 23 de octubre de 2015

Primer vuelo del Lockheed Martin F-16V


El F-16V es la última versión desarrollada por Lockheed Martin de este caza, preparada para operar conjuntamente con los cazas de quinta generación.

En 2012 Lockheed Martin anunció el desarrollo del F-16V Viper durante el salón de Singapurincorporando en este modelo gran parte de las mejoras que la USAF y otros clientes consideraban imprescindibles para la interoperatividad en el futuro del F-16 con los cazas de nueva generación como son los F-22 y F-35.




Entre estas mejoras se pueden citar un nuevo radar con antena de barrido electrónico activo (AESA por sus siglas en inglés), en este caso un radar Northrop Grumman AN/APG-83 AESA SABR (radar de haz ágil escalable). Este radar ya fue probado en un F-16 en 2010. Además desde el año que viene será montado también el los bombarderos Rockwell B-1.
Otras mejoras son una nueva pantalla de presentación en el pedestal central, aviónica, sistemas de misión y computador de misión modernizados, y un data bus Ethernet de alta capacidad.
Las mejoras propuestas con el F-16V pueden ser incorporadas a aviones ya en servicio.
Así, el F-16V que Lockheed Martin acaba de poner en vuelo está llamado a convertirse en el siguiente estándar de producción del modelo, aunque en estos momentos, con los pedidos que tiene Lockheed Martin, en 2015 se entregaría el último F-16 de producción a la Fuerza Aérea de Iraq.


http://fly-news.es

China concibe una aeronave para 'mirar por encima del hombro' a los portaaviones de EE.UU.

A mediados de octubre China probó un nuevo dirigible, el Yuanmeng, que ha sido diseñado para hacer frente en caso de guerra a otras potenciales aeronaves enemigas, en concreto portaaviones estadounidenses, escribe la revista 'Popular Mechanics'. 

El dirigible ha sido concebido para ascender a gran altura, ofreciendo nuevas capacidades de defensa y de vigilancia.

Yuanmeng es la primera aeronave china equipada con una fuerza sostenible y cuyo vuelo se puede controlar, informa la revista 'Popular Mechanics'. 

Se espera que la aeronave, que funciona con helio, pueda permanecer en el aire durante 48 horas y alcanzar una altura de entre 20 y 100 kilómetros. Una vez el Yuanmeng alcance la altura necesaria, los paneles solares montados en su superficie proporcionarán energía eléctrica a los motores.
China no ha revelado el objetivo del dirigible, que irá equipado con
instalaciones de comunicación y de Inteligencia, si bien se cree que su objetivo pasa por 'cazar' grandes naves enemigas en caso de guerra, en particular portaaviones estadounidenses.
Junto con la información recabada por satélites, aviones, submarinos y aviones no tripulados, el dirigible Yuanmeng permitirá al Ejército de Liberación Popular de China obtener una la imagen completa de eventuales operaciones militares en el mar.

https://actualidad.rt.com

TAURUS_MISSILE CRUCERO

...
Taurus KEPD 350 (acrónimo en inglés que significa Target Adaptive Unitary and Dispenser Robotic Ubiquity System / Kinetic Energy Penetrator and Destroyer) es un misil de crucero de largo alcance, desarrollado por el consorcio europeo EADS y fabricado por la empresa de capital conjunto germano-sueca 


TAURUS Systems GmbH. El misil es usado por las fuerzas aéreas de Alemania y España.

El misil Taurus posee capacidad furtiva, su radio de alcance es de 500 km, y está provisto de un motor turbofán capaz de alcanzar Mach 0,9. , 
KEPD 350,Pueden portarlo diferentes aviones.s y recientemente ofrecido a corea del sur e terrestre montado en una plataforma miovil para su lanzamiento en su version de defensa costera

TAURUS_MISSILE CRUCERO from VICTOR PILEGGI on Vimeo.

http://www.taurus-systems

Inside Lockheed Martin’s Fiber-Laser Weapon

With inherently higher electrical efficiency and beam quality, fiber lasers are in a race to reach maturity before the military makes decisions on the development and deployment of high-energy electric laser weapon systems for defensive and offensive missions.


A key step is the U.S. Army’s planned demonstration in 2017 of a 60-kW fiber-laser system developed by Lockheed Martin. But rival solid-state lasers have already exceeded 100 kW in demonstrations and are at a higher technology readiness level (TRL) as the services eye the potential for early fielding of directed-energy weapons.
Lockheed has begun production of the fiber-laser modules for the 60-kW system. The company was awarded a $25 million contract in April to build and test the modular laser for integration into the Army’s Boeing-developed High-Energy Laser Mobile Demonstrator (HEL MD). “We will deliver the laser to the customer at the end of 2016,” says Lockheed senior fellow Rob Afzal.
Previously, Lockheed built a 30-kW system using internal funds to demonstrate the feasibility of combining the beams from multiple fiber lasers while maintaining beam quality and electrical efficiency. The modular technology allows the laser to scale up to power levels beyond 100 kW, Afzal says. After the 2017 demo, the Army plans to upgrade the HEL MD to 100 kW and could do this simply by adding modules, he adds.



The Aladin 30-kW system demonstrated the ability to scale power by combining multiple fiber lasers. Credit: Lockheed Martin


Generating the laser beam by diode-pumping a long optical fiber results in higher beam quality and electrical efficiency but less power than solid-state devices using slabs of laser crystal as the gain medium. This requires the beams from multiple fibers to be combined efficiently to form a single high-power beam. Lockheed says its laser system can achieve 40% efficiency, reducing the power-generation and cooling requirements for the overall weapon system.

Afzal says the beam-combined fiber laser’s higher power and beam quality puts more irradiance on the target at greater range. This can increase engagement range or reduce defeat time, allowing a laser weapon system to “shoot-look-shoot” against multiple targets. Lockheed uses spectral beam combining. The output from each fiber-laser module is at a slightly different wavelength. A diffraction grating combines the beams by laying one on top of the other to form a single high-power beam—like a prism in reverse, he explains.

Compared with coherent beam combining used in other high-power lasers, spectral beam combining provides the highest “power-in-the-bucket” efficiency, a measure of beam quality that is a function of the power delivered to the target area. “The issue with a phased array is the sidelobes. The power in the lobes does not provide effect on the target,” says Afzal. “Coherent is efficient, but there is a lot of added complexity we feel isn’t necessary for the types of power and tactical applications we are trying to achieve. We went for the simplest, most elegant approach.”

The 30-kW Aladin demo system has around 100 fiber-laser modules. The 60-kW prototype for the Army has fewer, higher-power, kilowatt-class fiber lasers. “It’s almost 1 for 1 [lasers vs. kilowatts]. You can tack on 5-10%. That’s one of the big advantages of spectral beam combining,” says Afzal. On the end of each laser module is a delivery fiber that terminates in the beam-combiner box. This outputs a single high-power beam to the weapon system’s laser-beam director turret.

One aim of the demo system was to understand how to manufacture the lasers and what life-limited elements would wear out. The production modules are “more rugged, more traceable to a tactical vehicle and to beyond 100 kW,” he says. The truck-mounted HEL MD has been tested against mortars and unmanned aircraft with a 10-kW industrial fiber laser, but range and lethality was limited. After demonstration of the 60-kW system in 2017, plans call for tests of the 100-kW version by 2022.

Lockheed makes its own fiber lasers because of the need for high beam quality, but it uses component technologies such as optical fibers and pump diodes from the commercial market. “There have been two revolutions in lasers: telecommunications, and industrial cutting and welding. We bring them together to create a new class of laser,” Afzal says.


Industrial fiber lasers are available with higher power, up to 10 kW per fiber, but not with the quality required for beam combining. Most live-fire tests of laser weapons so far have used industrial lasers but scaled the power by aiming multiple beams at a common point so they overlap. This is done with the U.S. Navy’s 30-kW Laser Weapon System prototype, which has been deployed operationally for evaluation in the Persian Gulf on the forward-staging ship USS Ponce.


The Athena prototype weapon using the Aladin fiber laser disabled the engine of a truck in tests. Credit: Lockheed Martin
Advantages of a modular fiber laser include scaling, cooling and packaging. “With a modular design, you can scale to higher power by loading more modules into the rack, like blade servers in a server farm,” he says. Each module is independently cooled. “As we add more modules, we increase the size of the cooling system but not its complexity. It’s parallel, not serial. Previously, you ran into a scaling problem where, as the laser got more powerful and the slabs got bigger, you couldn’t get the heat out.”

Flexibility in packaging the modules is another benefit. “You can stack them vertically or horizontally, or in two cabinets. They are all independent, and the fiber delivers the power,” Afzal says. The Air Force Research Laboratory (AFRL) is looking at systems for sixth-generation fighters where the laser modules would be distributed throughout the aircraft and the beams routed by fibers through the tight confines of the airframe to a conformal array on the fuselage surface.

As it begins building the Army system, Lockheed is studying how the fiber-laser technology can be applied to other requirements. “We are looking at how we could package the system into a weapons module for the Littoral Combat Ship or into a pod for an aircraft, as well as Army tactical vehicles,” he says.

One potential application is AFRL’s planned Self-Protected High-Energy Laser Demonstration (Shield), for which a solicitation is expected shortly. Shield aims to demo an anti-missile self-defense pod for fighters by 2020 and a longer-range, 100-kW system by 2022. The Air Force wants the laser technology for a self-defense pod to be scalable to an offensive weapon that can be carried by larger aircraft, beginning with special-operations gunships.

“The Shield technology level we can do now,” says Afzal. “We would look at modifications to make it more relevant to the Air Force, but it is not a next-generation system.” But the key issue could be maturity of the fiber-laser technology versus other solid-state electric lasers. Army trials of the 60-kW system will take Lockheed’s technology to TRL 6, “arguably TRL 7 depending on how they use the system and if they do tactical engagements,” he says. The race is on.

http://aviationweek.com

Proyecto Tronador II CONAE con presupuesto de 1800 millones para 2016





Raytheon devela pequeño misil guiado por laser denominado "PIKE"

Pike es un arma de 17 pulgadas de largo, semi-activo guiado por láser de precisión, mide 40 mm de diámetro y un peso de dos libras. Es sólo munición de precisión guiada lanzado a mano del mundo. 

Despedido de un fusil lanzagranadas montado, la munición miniaturizada desarrollado por el mayor fabricante de misiles del planeta, la estadounidense Raytheon, ha desvelado este mes el prototipo de un proyectil más pequeño que una barra de pan y que puede ser disparado desde un lanzagranadas convencional. 

Bautizado como Pike, mide apenas 43 centímetros de largo y 3,8 de diámetro, aunque lo que quizá llama más la atención es su peso: apenas 700 gramos.


Pese a su tamaño, este misil diseñado para tropas en tierra es capaz de alcanzar objetivos situados a una distancia de hasta 2 kilómetros, y de hacerlo con precisión extrema.

Para ello cuenta con guiado láser. Eso quiere decir que se puede disparar el Pike sin apuntar desde una posición en peligro. Lo único que hace falta es que alguien (no necesariamente quien ha disparado el misil: podría ser incluso un dron) ilumine al enemigo con luz de láser.

Pike volará a unos tres metros de altura buscando ese reflejo de luz como si fuese un faro en medio de la oscuridad, e impactará sobre él.

Objetivo: reducir costes


El diseño de este mini misil se ha hecho pensando en ahorrar costes. Por una parte, puede dispararse desde armamento ya existente, como el M203 (con adaptaciones) o el EGLM, que son módulos que se acoplan sobre rifles de asalto convencionales.

Por otra parte, Pike pretende terminar con el uso de los misiles antitanque Javelin -mucho más costosos- sobre objetivos de infantería ligera.

Según explica un director de Raytheon a Military.com el uso de esos proyectiles -a un coste de 246.000 dólares la pieza- se ha convertido en algo habitual cuando las tropas estadounidenses no son capaces de eliminar un objetivo con munición de gran calibre o con el uso de lanzagranadas.


El Pike contará con mucho menos poder destructivo que los Javelin, pero esa es precisamente la idea: que los soldados usen el Pike para abatir a la infantería enemiga y 'ahorren' al Tío Sam los misiles más potentes y costosos, reservándolos para acabar con tanques.

Pero el mercado de Pike no se acaba en las manos de los efectivos de las fuerzas armadas, porque la empresa con sede en Massachusetts ha confirmado que las dimensiones del misil lo hacen idóneo para ir montado en todoterrenos, pequeñas lanchas y, especialmente, en la próxima generación de drones de pequeño tamaño.

http://www.raytheon.com

http://www.eleconomista.es

Raytheon AGM-88 HARM

El AGM-88 HARM (siglas de High-speed Anti-Radiation Missile) es un misil táctico aire-superficie diseñado contra transmisiones electrónicas asociadas con sistemas de radar de misiles superficie-aire. 


El misil fue originalmente desarrollado por Texas Instruments (TI) como sustituto de los sistemas AGM-45 Shrike y AGM-78 Standard ARM.

La producción fue posteriormente tomada por Raytheon Corporation (RAYCO) cuando la compañía de defensa TI fue adquirida por RAYCO. A la luz de la experiencia de combate sobre Vietnam, se iniciaron en 1969 los trabajos de desarrollo del definitivo HARM (High-speed Anti-Radiation Missile, misil antirradar de alta velocidad). Las grandes dificultades tecnicas que suponna ralentizaron su desarrollo y los proyectiles iniciales de serie del que ser la designado AGM-88 no se entregaron hasta 1983. Con un peso de unos 360kg al lanzamiento, el AGM-88 utiliza su muy alta velocidad para alcanzar y destruir un transmisor enemigo antes de que sus operadores tengan tiempo de desconectarlo.

...
El HARM ha sido autorizado para ser usado por una amplia variedad de aviones de combate, y es el armamento primario de los equipos "Wild Weasel" de la USAF. El HARM ha sido lanzado desde Phantom II, F-16, F/A -18 Hornet, A-6 Intruder, EA-6 Prowler, A-7 Corsair II y el europeo Panavia Tornado. El misil dispone de tre3 modos de funcionamiento. En el modo de larga distancia en "stand-off" (desde fuera del alcance enemigo), se programan en tierra tres blancos especificos en el misil. 

Cuando es detectada la radiación electromagnetica de uno de ellos, es lanzado hacia el emisor amenazante. El radar enemigo debe seguir emitiendo para que el misil se guíe contra el. 

http://www.raytheon.com

Russia’s Winning the Electronic War



foreignpolicy.comIn Ukraine and Syria, Russian forces are using high-tech eIquipment to jam drones and block battlefield communications -- and forcing the U.S. to scramble to catch up.

It comes at different times, and in different forms. But as they have charted the war in southeast Ukraine over the past year, drones flown by the Organization for Security and Co-operation in Europe have run into the same problem: Russian troops on the ground are jamming them into virtual blindness.

It’s just one part of a sophisticated Russian electronic warfare (EW) effort in Ukraine that has proved a sobering experience for the U.S. Army. Faced with how the newly modernized Russian army is operating in Ukraine and Syria — using equipment like the Krasukha-4, which jams radar and aircraft —American military officials are being forced to admit they’re scrambling to catch up.

Lt. Gen. Ben Hodges, commander of U.S. Army units in Europe, has described Russian EW capabilities in Ukraine as “eye-watering.” Ronald Pontius, deputy to Army Cyber Command’s chief, Lt. Gen. Edward Cardon, told a conference this month that “you can’t but come to the conclusion that we’re not making progress at the pace the threat demands.”

The electronic war was on display from the start of the Russian incursion into Crimea in the spring of 2014. Not long after Russian EW equipment began rolling into the region, Ukrainian troops began to find that their radios and phones were unusable for hours at a time. Meanwhile, the Organization for Security and Co-operation in Europe, an international conflict-monitoring group, has consistently reported that its drones watching the conflict in eastern Ukraine have been “subject to military-grade GPS jamming,” forcing monitors to scrub missions taking stock of the war below.

At the forefront of the push to get the U.S. Army up to speed is Col. Jeffrey Church, the Army’s chief of electronic warfare. But it won’t be easy. Dealing with falling budgets, a lack of EW equipment, and a force that is shrinking by tens of thousands of troops, Church says that he has managed to train only a few hundred soldiers — a fraction of the EW forces that are fielded by potential adversaries like Russia and China.

“They have companies, they have battalions, they have brigades that are dedicated to the electronic warfare mission,” Church said in an interview with Foreign Policy. Those units are deploying “with specific electronic warfare equipment, with specific electronic warfare chains of command,” he said.

Currently, 813 soldiers make up the Army’s EW mission, for which just over 1,000 positions have been authorized. And other Army units are guarding against Church’s attempts to peel away soldiers from their ranks to join his. The staffing squeeze is only expected to get worse as the overall Army contracts: At its peak during the wars in Iraq and Afghanistan, the Army had about 570,000 soldiers; it is on pace to be down to 450,000 by the end of 2017. That number could slide even further, to 420,000 over the next several years, if Washington deadlocks over a long-term budget deal in the coming months.

At the moment, U.S. Army battalions typically assign two soldiers to the EW mission, and they will “have to do 24-hour operations” in battle against sophisticated enemies, Church said. That includes planning and coordinating with other battalion units as well as ensuring that their own jammers and advanced communications tools are working. “There’s too much to do for those guys in a battalion,” Church said. “So how do you maintain in a high-intensity environment against a peer enemy?”

A good amount of the EW equipment the Army bought over the past decade was paid for with supplemental wartime funding accounts. Church said that means it largely sits on shelves, awaiting repair and refurbishments, without regularly budgeted funding to keep it up to date.

In looking at Moscow’s capabilities, the U.S. Army’s Foreign Military Studies Office assessed this year that Russia “does indeed possess a growing EW capability, and the political and military leadership understand the importance” of such warfare. “Their growing ability to blind or disrupt digital communications might help level the playing field when fighting against a superior conventional foe,” the assessment concluded.

Ukraine, which is equipped with easily jammed electronic systems, has proved to be a perfect place for Moscow to showcase its EW prowess. The Russian effort “is likely not aimed at Ukraine as much as it is aimed at NATO and more serious adversaries,” said Dmitry Gorenburg, a senior research scientist at CNA, a nonprofit research and analysis organization.

Last March, Deputy Defense Secretary Robert Work created an EW executive committee led by Frank Kendall, the undersecretary for acquisition, technology, and logistics. At the time, Work noted that the Defense Department had “lost focus on electronic warfare at the programmatic and strategic level.”

Although the Army is running a number of studies to quickly update and better integrate EW capability, none will be completed soon. In the meantime, Church said, soldiers must start training for new kinds of wars — namely, those that will increasingly depend on the kinds of sophisticated electromagnetic weapons that are becoming a mainstay for America’s most powerful conventional adversaries.

“We need to start challenging ourselves a little bit more,” Church said. “We should train as we anticipate we will fight.… It’s [currently] done very little.”

Photo credit: U.S. Army/Spc. Joshua Edwards

http://foreignpolicy.com

Eurenco llenará las ojivas de los misiles antibuque franco-británicos Sea Venom


Infodefensa.com - La compañía francesa de explosivos y propelentes para munición Eurenco suministrará el contenido de las ojivas que portarán los misiles antibuque Sea Venom. Estas armas están siendo desarrolladas por la compañía misilística europea MBDA para las fuerzas armadas de Francia y Reino Unido.

Eurenco, propiedad de la filial SNPE de GIAT Industries (matriz también de Nexter), ha anunciado el contrato, del que no concreta cifras, en un comunicado de agradecimiento a los visitantes de su stand a la feria sectorial DSEI celebrada hace un mes en Londres.
El misil franco-británico Sea Venom entrará en servicio previsiblemente dentro de cinco años con las fuerzas navales de la Marina Real del Reino Unido, donde sustituirá a los misiles Sea Skua. En la Armada Francesa la futura arma remplazará a los misilesAS 15 TT. Se espera que los Sea Venom se monten sobre helicópteros navales Wildcatbritánicos y Panther y NH90 franceses. El misil podrá ser controlado por el operador, al que enviará datos en todo momento, durante su vuelo completo hasta el objetivo.
Eurenco se encargará de la producción y llenado de la ojiva de munición de riesgo atenuado (conocida por las siglas IM en inglés) con un compuesto basado en el I-RDXcreado por la compañía. Los trabajos tendrán lugar en su planta de Sorgues, al sureste de Francia, y las primeras entregas a MBDA se iniciarán una vez lograda su certificación, en una fecha prevista que la compañía aún no ha especificado.

...

La empresa ya suministra el llenado de explosivos para casi todos los principales programas europeos de misiles antibuque. Además de explosivos para municiones militares, la compañía produce explosivos para el sector civil y un amplio abanico de propelentes y elementos combustibles para la industria de defensa y seguridad y el mercado civil.
Junto a sus instalaciones en Sorgues, Eurenco también cuenta con plantas de producción en Bergerac (suroeste de Francia), Clermont (noreste de Bélgica) y Karlskoga (sur de Suecia), y dispone de una oficina comercial en la ciudad de Washington (Estados Unidos).

Infodefensa